
IJSRSET16217 | Received: 24 December 2015 | Accepted: 29 December 2015 | November-December 2015 [(1)6: 426-431]

© 2015 IJSRSET | Volume 1 | Issue 6 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

426

Heterogeneous Wireless Sensor Network for Big Data Analytics
Alpesh R. Sankaliya

Electronics & Communication Engineering Department, Government Polytechnic, Dahod, Gujarat, India

ABSTRACT

Wireless sensor networks (WSN) are collections of hypothetically large number of physical devices responsible for

measuring environmental variables and of transmitting the data to one or more network(s). The data gathered

through H-WSN (Heterogeneous Wireless Sensor Network) are to be dynamically process and is subjected to be

analysed to monitor the considered issues and support the decision making. Data transmission is accomplished over

radio links and routing is based on ad-hoc networking protocols. The sensor devices produce and collect large

volume of data from physical-world where quality of data can also vary over time. The data can be represented as

numerical measurement values or as symbolic descriptions of occurrence in the world. If we look on wireless sensor

data (WSN) applications follows Militery applications, Environmental applications, Health applications, Home

applications, Commercial applications and much more are varied dimension that needs big data analytics. All these

analytics system need good performance and has to support uers’s adaptively and also the quality, validity and trust

of data collected by wireless sensors. These challenges requirement have attracted researchers to improve

performance along with time and cost efficient.

Keywords: Wireless Sensor Network, Big Data Analytics, information technology, NOSQL, Hadoop distributed

file system MapReduce, MPI, GPFS

I. INTRODUCTION

A sensor network is an infrastructure comprised of

sensing (measuring), computing, and communication

elements that gives an administrator the ability to

instrument, observe, and react to events and phenomena

in a specified environment. The administrator typically

is a civil, governmental, commercial, or industrial entity.

The environment can be the physical world, a biological

system, or an information technology (IT) framework.

Network(ed) sensor systems are seen by observers as an

important technology that will experience major

deployment in the next few years for a plethora of

applications, not the least being national security Typical

applications include, but are not limited to, data

collection, monitoring, surveillance, and medical

telemetry. In addition to sensing, one is often also

interested in control and activation. Wireless sensor

networks (WSNs) provide rapid , untethered access to

information and computing, eliminating the barriers of

distance, time, and location for many application sin

national security, civilian search and rescue operations,

surveillance, area/target monitoring, and many more.

The look at the big data not only tells that it is very large

but also of varied dimensions and fast growing in data

volume. As a result the suitable techniques and

technologies are needed to collect the data from

different sources and thereafter to organize, transform,

manage and analyse efficiently the same for intended

purpose. The analytical techniques may include data

mining, cluster analysis etc. to extract and learn

complex patterns that empowers decision makers to

make intelligent decision and text analysis[1]. The

technology domain that support to house and manage

and utilize big data to facilitate analysis may include

enterprise data warehousing, visually represent results,

map reduce and Hadoop, NOSQL database. The

requirements of different sectors needing infrastructure

for Big data management and their analysis are different.

It is experienced in diversified areas like Health care,

Environment moitoring Astronomical data analysis etc.

populate big data volume in short span of time

increasing the volume exponentially. The data resource

housed in big data repository has potential information

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

427

to be analysed to make meaningful conclusions in case

of monitoring as well as decision making.

The digital revolution and the fast increase of

information exchange have generated interesting

research issues, under the domain of big data analytics,

as cyber security, intellectual property rights, digital

evidence required in a cybercrime. The scientific

research dry and it advances in the field of electric

vehicals generate very large volume of logger data

collected from a set of sensors fitted in vehicles[2]. The

logger data are in the initial set store as flat file. These

data are predominantly unstructured and non-relational

but volume wise and nature wise it can safely regardless

as big data. This big data set are very vital and needs

appropriate analysis with high performance as well as

computational efficiency, further the framework which

is develop is expected to be scalable to accomadate fast

growing data and ensuring its robust, security ever the

communication channel in the network. This research

needs Hadoop build architecture to manage distributed

data over a network in a real time mode of data

collection and its subsequent storage. The system should

give support for high performance, parallel processing

and efficient retrival for decision making.

CHALLENGES WITH WIRELESS SENSOR

DATA

Sensor data brings numerious challenges with it in the

context of data collection, storage and processing. This

is because sensor data processing often requires efficient

and real-time processing from massive and the nature of

such data tends to be dynamic, heterogeneous, untidy

and sometimes untrustworthy. This kind of large scale

unstructured multi- dimensional data is known as Big

Data[3]. Any analysis of such data will be cumbersome

and complex for performing certain kind of analyses.

Some of these challenges may be as follows:

 Limited hardware: Each node has limited

processing, storage, and communication capabilities,

and limited energy supply and bandwidth.

 Limited support for networking: The network is

peer-to-peer, with a mesh topology and dynamic,

mobile, and unreliable connectivity.

 Limited support for software development: The

tasks are typically real-time and massively

distributed, involve dynamic collaboration among

nodes, and must handle multiple competing events.

 Data collection is a huge challenge in the context of

sensor processing because of the natural errors and

incompleteness in the collection process. Some

sensors often have limited battery life, because of

which many of the sensors in a network may not be

able to collect or transmit their data over large

periods of time. The errors in the underlying data

may lead to uncertainty of the data representation.

Therefore, methods need to be designed to process

the data in the presence of uncertainty.

 Sensors are often designed for applications which

require real-time processing. This requires the

design of efficient methods for stream processing.

Such algorithms need to be executed in one pass of

the data, since it is typically not often possible to

store the entire data set because of storage and other

constraints.

 The large volumes of data lead to huge challenges in

terms of storage and processing of the data. It has

been estimated that since 2008, the number of

internet-connected devices has exceeded the number

of people on the planet. Thus, it is clear that the

amount of machine generated data today greatly

exceeds the amount of human generated data, and

this gap is only likely to increase in the forseeable

future. This is widely known as the big data

problem in the context of analytical applications, or

the information overload problem in stream

processing.

 In many cases, it is critical to perform in-network

processing, wherein the data is processed within the

network itself, rather than at a centralized service.

This needs effective design of distributed processing

algorithms, wherein queries and other mining

algorithm can be processed within the network in

real time.[4]

In spite of the associated complexities, the main goal is

to comprehensively study this data without losing any

important information. Also, the proliferation of data

everyday poses a significant challenge towards

accumulation, integration and storage of it. Such a rapid

growth demands extensive scalability support from the

computational systems. As the size of data increases, so

does the query time for retrieving any information from

it. Hence, it is important that the query method leverages

the capabilities of the internal infrastructure to retrieve

the required information from the datasets in minimum

time. Hence, these factors have to be holistically

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

428

considered while designing and implementing the data

repository. Wireless sensor network is responsible for

stpring, sharing, searching and analyzing data from

heterogeneous devices [5]. So, collection data from

different types of sensors make a focus on analyzing

those data and make in knowledgeable data.

The work involves identifying and implementing

complex algorithms in the field of Wireless sensor data

research using MapReduce. Further, this dataset can be

integrated with other entities such as weather data,

traffic information, topology details, etc. This can

further strengthen the use of Hadoop in harvesting user-

customized information from heterogeneous datasets [6].

II. METHODS AND MATERIAL

A. Research Design And Methodology

Heterogeneous sensors data separates functionalities into

a distributed decision system and a sensing system to

overcome the limitations of a homogeneous system. The

data are unique dataset that collected driving data during

real time commute conditions. The main goal is to

comprehensively study this data without losing any

important information. Hadoop was chosen as the

software framework for analyzing the collected

heterogeneous sensors data. It is an open source tool.

Hadoop distributed file system (HDFS) and MapReduce

(MR) were the crucial components used in this data

analytics. Experimental setup consisted of multiple

Linux VMs configured over a cluster of physical servers.

The raw data was purged anHadoop distributed file

system (HDFS) and MapReduce (MR) were the based

omponents used in this data analytics [7]. Appropriate

map and reduce functions were programmed to retrieve

information.

B. MapReduce

MapReduce is a programming model and an associated

implementation for processing and generating large data

sets with a parallel, distributed algorithm on a cluster.

In order to appreciate what map-reduce brings to the

table; I think it is most meaningful to contrast it to what

I call traditional computing problems. I define

“traditional” computing problems as those which use

libraries like MPI, OpenMP, CUDA, or pthreads to

produce results by utilizing multiple CPUs to perform

some sort of numerical calculation concurrently.

Problems that are well suited to being solved with these

traditional methods typically share two common features:

1. They are cpu-bound: the part of the problem that

takes the most time is doing calculations involving

floating point or integer arithmetic

2. Input data is gigabyte-scale: the data that is

necessary to describe the conditions of the

calculation are typically less than a hundred

gigabytes, and very often only a few hundred

megabytes at most

i. Traditional Parallel Applications

To illustrate these differences, the following schematic

depicts how your typical traditionally parallel

application works.

The input data is stored on some sort of remote storage

device (a SAN, a file server serving files over NFS, a

parallel Lustre or GPFS filesystem, etc; grey cylinders).

The compute resources or elements (blue boxes) are

abstract units that can represent MPI ranks, compute

nodes, or threads on a shared-memory system.

Upon launching a traditionally parallel application,

 A master parallel worker (MPI rank, thread, etc)

reads the input data from disk (green arrow).

 The master worker then divides up the input data

into chunks and sends parts to each of the other

workers (red arrows).

 All of the parallel workers compute their chunk of

the input data

 All of the parallel workers communicate their results

with each other, then continue the next iteration of

the calculation

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

429

In some cases multiple workers may use a parallel I/O

API like MPI-IO to collectively read input data, but the

filesystem on which the input data resides must be a

high-performance filesystem that can sustain the

required device-and network-read bandwidth.

The fundamental limit to scalability here is step #1–the

process of reading the input data (green arrow) is

performed serially. Even if you can use MPI-IO to

perform the data ingestion in parallel, the data is

separated from the compute resources (blue squares) by

some pipe through which data can flow at some finite

rate. While it is possible to increase the speed of this

connection between your data and your compute

resources by throwing more money at it (e.g., buying

fast SSDs, faster storage networking, and/or more

parallel storage servers), the cost of doing this does not

scale linearly.

Data-Intensive Applications

The map-reduce paradigm is a completely different way

of solving a certain subset of parallelizable problems

that gets around the bottleneck of ingesting input data

from disk (that pesky green arrow). Whereas traditional

parallelism brings the data to the compute, map-reduce

does the opposite–it brings the compute to the data:

Figure 1 : Map Reduce Paradigm

In map-reduce, the input data is not stored on a separate,

high-capacity storage system. Rather, the data exists in

little pieces and is permanently stored on the compute

elements. This allows our parallel procedure to follow

these steps:

1. We don’t have to move any data since it is pre-

divided and already exists on nodes capable of

acting as computing elements

2. All of the parallel worker functions are sent to the

nodes where their respective pieces of the input data

already exist and do their calculations

3. All of the parallel workers communicate their results

with each other, move data if necessary, then

continue the next step of the calculation

Thus, the only time data needs to be moved is when all

of the parallel workers are communicating their results

with each other in step #3. There is no more serial step

where data is being loaded from a storage device before

being distributed to the computing resources because the

data already exists on the computing resources.

C. Hadoop - A Map-Reduce Implementation

Now that we’ve established a description of the map-

reduce paradigm and the concept of bringing compute to

the data, we are equipped to look at Hadoop, an actual

implementation of map-reduce.

D. The Magic of HDFS (Hadoop Distributed File

System)

The idea underpinning map-reduce–bringing compute to

the data instead of the opposite–should sound like a very

simple solution to the I/O bottleneck inherent in

traditional parallelism. However, the devil is in the

details, and implementing a framework where a single

large file is transparently diced up and distributed across

multiple physical computing elements (all while

appearing to remain a single file to the user) is not trivial.

Hadoop, perhaps the most widely used map-reduce

framework, accomplishes this feat using HDFS, the

Hadoop Distributed File System. HDFS is fundamental

to Hadoop because it provides the data chunking and

distribution across compute elements necessary for map-

reduce applications to be efficient. Since we’re now

talking about an actual map-reduce implementation and

not an abstract concept; let’s refer to the

abstract compute elements now as compute nodes.

HDFS exists as a filesystem into which you can copy

files to and from in a manner not unlike any other

filesystem. Many of the typical commands for

manipulating files (ls, mkdir, rm, mv, cp, cat,tail,

and chmod, to name a few) behave as you might expect

in any other standard filesystem (e.g., Linux’s ext4).

The magical part of HDFS is what is going on just

underneath the surface. Although it appears to be a

filesystem that contains files like any other, in reality

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

430

those files are distributed across multiple physical

compute nodes:

Figure 2 : HDFS

When you copy a file into HDFS as depicted above, that

file is transparently sliced into 64 MB “chunks” and

replicated three times for reliability. Each of these

chunks are distributed to various compute nodes in the

Hadoop cluster so that a given 64 MB chunk exists on

three independent nodes. Although physically chunked

up and distributed in triplicate, all of your interactions

with the file on HDFS still make it appear as the same

single file you copied into HDFS initially. Thus, HDFS

handles the entire burden of slicing, distributing, and

recombining your data for you.

E. Map-Reduce Jobs

HDFS is an interesting technology in that it provides

data distribution, replication, and automatic recovery in

a user-space filesystem that is relatively easy to

configure and, conceptually, easy to understand.

However, its true utility comes to light when map-

reduce jobs are executed on data stored in HDFS.

As the name implies, map-reduce jobs are principally

comprised of two steps: the map step and the reduce step.

The overall workflow generally looks something like

this:

Figure 3 : Program Flow of a map-reduce Application

The left half of the diagram depicts the HDFS magic

described in the previous section, where the hadoop dfs -

copyFromLocal command is used to move a large data

file into HDFS and it is automatically replicated and

distributed across multiple physical compute nodes.

While this step of moving data into HDFS is not strictly

a part of a map-reduce job (i.e., your dataset may

already have a permanent home on HDFS just like it

would any other filesystem), a map-reduce job’s input

data must already exist on HDFS before the job can be

started

Figure 4 : Overall design of the Hadoop Framework

http://www.glennklockwood.com/data-intensive/hadoop/hdfs-magic.png
http://www.glennklockwood.com/data-intensive/hadoop/hdfs-magic.png
http://www.glennklockwood.com/data-intensive/hadoop/hdfs-magic.png
http://www.glennklockwood.com/data-intensive/hadoop/hdfs-magic.png
http://www.glennklockwood.com/data-intensive/hadoop/hdfs-magic.png

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

431

Figure 4 shows the overall structure of a Hadoop

framework based on a wireless sensor network. In this

figure, each sensor network group (sensor network 1,

sensor network 2, and sensor network 3) has different

sensors and purposes as well as generating a variety of

sensing data. For example, sensor network 1 collects

sensing data regarding environmental information

(humidity, temperature, carbon dioxide, carbon

monoxide, ozone, etc.). Sensor network 2 collects

sensing data regarding historical information (water

level, rainfall, etc.). Sensor network 3 collects sensing

data regarding video information (proximity distance,

image, vision, etc.). The collected sensing data will be

very large in size; hence, it is called Big Data. These

data are first stored in the local file system of the

namenode. Stored data are again stored in the distributed

file systems based on the Hadoop framework through

MapReduce. The Hadoop framework is comprised of

namenodes and datanodes. Each node has either a server

agent or a client agent in order to monitor the Hadoop

framework during MapReduce.

III. CONCLUSION & PROPOSED WORK

Scientific community has collected large amounts of raw

data from experiments and simulation. This proliferation

of data everyday poses a significant challenge towards

its accumulation. Different data analytics methods of

data analytics can be performed on wireless sensors

datasets. In spite of all the involved complexities, the

main goal of this study is to demonstrate the benefits of

big data analytics.

The research targets are center around:

 Simplification of data formats for storage of data

coming from heterogeneous sensors in real time

mode.

 Real time information retrival and processing of

filter and cluster data relevant to objective to open

up new possibilities.

 Statistical analysis of modeling data to extract

hidden patterns associations / relationships between

selected parameters.

 Demostrate the benefits of heterogeneous data

analysis.

 Enable user’s capability to pre-process the data

during the query as per their requirements.

 Monitor the performance of the sensor’s activity to

achieve the trustable and reliable data.

 Design Framework for heterogeneous big data

analytics

IV. REFERENCES
[1] Romer Kay and Mattern F. (2004). The Design

Space of Wireless Sensor Networks, IEEE Wireless

Communications.

[2] Mhatre V and Rosenberg C. (2004). Homogeneous

vs. Heterogeneous Clustered Sensor Networks : A

Comparative Study. Proceedings of IEEE

International Conference on Communications (ICC).

[3] Yuan L, and Gui C. (2004). Applications and Design

of Heterogeneous and Broadband Advanced Sensor

Networks (Basenets).

[4] Big-Data in the Cloud: Converging Technologies,

Intel IT centre, September 2014.

[5] Wireless Sensor Networks: Technology, Protocols,

and Applications, by Kazem Sohraby, Daniel

Minoli, and Taieb Znati

[6] “Intelligent services for Big Data science,” C.

Dobrea, F. Xhafab, University Politehnica of

Bucharest, Romana, Elsevier, 9 August 2013.

[7] “A study of electrical vehicle Data Analytics,”

Vamshi K. Bolly, John A . Springer, J. Eric Dietz!,

Computer and Information Technology, College of

Technology, Purdue University.

[8] “Analytics over large-scale multidimensional data:

the Big Data revolution,” A. Cuzzocrea, I. Y. Song,

and K. C. Davis. in Proceedings of the ACM 14th

international workshop on Data Warehousing and

OLAP, ACM, October, 2011.

[9] “Managing and Mining sensor data” ,Charu C.

Aggrawal, IBM T. J. Watson Research Center

Yorktown Heights, NY 10598

[10] “An introduction to sensor data analytics” ,Charu C.

Aggrawal, IBM T. J. Watson Research Center

Yorktown Heights, NY 10598

[11] “Apache Hadoop”, The Apache Software

Foundation, http://hadoop.apache.org, February,

2014.

[12] Harnessing Hadoop: Understanding the Big Data

Processing Options for Optimizing Analytical

Workloads, www.cognizant.com, cognizant 20-20

Insights

[13] M. Caccamo, L.Y. Zhang, L. Sha, G. Buttazzo, An

implicit prioritized access protocol for wireless

sensor networks, in: Proc. IEEE Real-Time Systems

Symp., December 2002, pp. 39–48.

