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ABSTRACT 
 

Wireless sensor networks (WSN) are collections of hypothetically large number of physical devices responsible for 

measuring environmental variables and of transmitting the data to one or more network(s). The data gathered 

through H-WSN (Heterogeneous Wireless Sensor Network) are to be dynamically process and is subjected to be 

analysed to monitor the considered issues and support the decision making.  Data transmission is accomplished over 

radio links and routing is based on ad-hoc networking protocols. The sensor devices produce and collect large 

volume of data from physical-world where quality of data can also vary over time. The data can be represented as 

numerical measurement values or as symbolic descriptions of occurrence in the world. If we look on wireless sensor 

data (WSN) applications follows Militery applications, Environmental applications, Health applications, Home 

applications, Commercial applications and much more are varied dimension that needs big data analytics. All these 

analytics system need good performance and has to support uers’s adaptively and also the quality, validity and trust 

of data collected by wireless sensors. These challenges requirement have attracted researchers to improve 

performance along with time and cost efficient. 

Keywords: Wireless Sensor Network, Big Data Analytics, information technology, NOSQL, Hadoop distributed 

file system MapReduce, MPI, GPFS 

 

I. INTRODUCTION 

 

A sensor network is an infrastructure comprised of 

sensing (measuring), computing, and communication 

elements that gives an administrator the ability to 

instrument, observe, and react to events and phenomena 

in a specified environment. The administrator typically 

is a civil, governmental, commercial, or industrial entity. 

The environment can be the physical world, a biological 

system, or an information technology (IT) framework. 

Network(ed) sensor systems are seen by observers as an 

important technology that will experience major 

deployment in the next few years for a plethora of 

applications, not the least being national security Typical 

applications include, but are not limited to, data 

collection, monitoring, surveillance, and medical 

telemetry. In addition to sensing, one is often also 

interested in control and activation. Wireless sensor 

networks (WSNs) provide rapid , untethered access to 

information and computing, eliminating the barriers of 

distance, time, and location for many application sin 

national security,  civilian search and rescue operations, 

surveillance, area/target monitoring, and many more. 

 

The look at the big data not only tells that it is very large 

but also of varied dimensions and fast growing in data 

volume. As a result the suitable techniques and 

technologies are needed to collect the  data from 

different  sources and thereafter to organize, transform, 

manage and analyse efficiently the same for intended 

purpose. The analytical techniques may include data 

mining, cluster analysis etc.  to extract and learn 

complex patterns that empowers decision makers  to 

make intelligent decision and text analysis[1]. The 

technology domain that support to house and manage 

and utilize big data to facilitate analysis may include 

enterprise data warehousing, visually represent results, 

map reduce and Hadoop, NOSQL database. The 

requirements of different sectors needing infrastructure 

for Big data management and their analysis are different. 

It is experienced in diversified areas like Health care, 

Environment moitoring Astronomical data analysis etc. 

populate big data volume in short span of time 

increasing the volume exponentially. The data resource 

housed in big data repository has potential information 
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to be analysed to make meaningful conclusions in case 

of monitoring as well as decision making. 

  

The digital revolution and the fast increase of 

information exchange have generated interesting 

research issues, under the domain of big data analytics, 

as cyber security, intellectual property rights, digital 

evidence required in a cybercrime. The scientific 

research dry and it advances in the field of electric 

vehicals generate very large volume of logger data 

collected from a set of sensors fitted in vehicles[2]. The 

logger data are in the initial set store as flat file. These 

data are predominantly unstructured and non-relational 

but volume wise and nature wise it can safely regardless 

as big data. This big data set are very vital and needs 

appropriate analysis with high performance as well as 

computational efficiency, further the framework which 

is develop is expected to be scalable to accomadate fast 

growing data and ensuring its robust, security ever the 

communication channel in the network. This research 

needs Hadoop build architecture to manage distributed 

data over a network in a real time mode of data 

collection and its subsequent storage. The system should 

give support for high performance, parallel processing 

and efficient retrival for decision making. 

 

CHALLENGES WITH WIRELESS SENSOR 

DATA 

 

Sensor data brings numerious challenges with it in the 

context of data collection, storage and processing. This 

is because sensor data processing often requires efficient 

and real-time processing from massive and the nature of 

such data tends to be dynamic, heterogeneous, untidy 

and sometimes untrustworthy. This kind of large scale 

unstructured multi- dimensional data is known as Big 

Data[3]. Any analysis of such data will be cumbersome 

and complex for performing certain kind of analyses. 

Some of these challenges may be as follows: 

 Limited hardware: Each node has limited 

processing, storage, and communication capabilities, 

and limited energy supply and bandwidth. 

 Limited support for networking: The network is 

peer-to-peer, with a mesh topology and dynamic, 

mobile, and unreliable connectivity. 

 Limited support for software development: The 

tasks are typically real-time and massively 

distributed, involve dynamic collaboration among 

nodes, and must handle multiple competing events. 

 Data collection is a huge challenge in the context of 

sensor processing because of the natural errors and 

incompleteness in the collection process. Some 

sensors often have limited battery life, because of 

which many of the sensors in a network may not be 

able to collect or transmit their data over large 

periods of time. The errors in the underlying data 

may lead to uncertainty of the data representation. 

Therefore, methods need to be designed to process 

the data in the presence of uncertainty. 

 Sensors are often designed for applications which 

require real-time processing. This requires the 

design of efficient methods for stream processing. 

Such algorithms need to be executed in one pass of 

the data, since it is typically not often possible to 

store the entire data set because of storage and other 

constraints. 

 The large volumes of data lead to huge challenges in 

terms of storage and processing of the data. It has 

been estimated that since 2008, the number of 

internet-connected devices has exceeded the number 

of people on the planet. Thus, it is clear that the 

amount of machine generated data today greatly 

exceeds the amount of human generated data, and 

this gap is only likely to increase in the forseeable 

future. This is widely known as the big data 

problem in the context of analytical applications, or 

the information overload problem in stream 

processing. 

 In many cases, it is critical to perform in-network 

processing, wherein the data is processed within the 

network itself, rather than at a centralized service. 

This needs effective design of distributed processing 

algorithms, wherein queries and other mining 

algorithm can be processed within the network in 

real time.[4] 

 

In spite of the associated complexities, the main goal is 

to comprehensively study this data without losing any 

important information.  Also, the proliferation of data 

everyday poses a significant challenge towards 

accumulation, integration and storage of it. Such a rapid 

growth demands extensive scalability support from the 

computational systems. As the size of data increases, so 

does the query time for retrieving any information from 

it. Hence, it is important that the query method leverages 

the capabilities of the internal infrastructure to retrieve 

the required information from the datasets in minimum 

time. Hence, these factors have to be holistically 
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considered while designing and implementing the data 

repository. Wireless sensor network is responsible for 

stpring, sharing, searching and analyzing data from 

heterogeneous devices [5]. So, collection data from 

different types of sensors make a focus on analyzing 

those data and make in knowledgeable data.  

 

The work involves identifying and implementing 

complex algorithms in the field of Wireless sensor data 

research using MapReduce. Further, this dataset can be 

integrated with other entities such as weather data, 

traffic information, topology details, etc. This can 

further strengthen the use of Hadoop in harvesting user-

customized information from heterogeneous datasets [6]. 

 

II. METHODS AND MATERIAL 

 

A. Research Design And Methodology 

 

Heterogeneous sensors data separates functionalities into 

a distributed decision system and a sensing system to 

overcome the limitations of a homogeneous system. The 

data are unique dataset that collected driving data during 

real time commute conditions. The main goal is to 

comprehensively study this data without losing any 

important information. Hadoop was chosen as the 

software framework for analyzing the collected 

heterogeneous sensors data. It is an open source tool. 

Hadoop distributed file system (HDFS) and MapReduce 

(MR) were the crucial components used in this data 

analytics. Experimental setup consisted of multiple 

Linux VMs configured over a cluster of physical servers. 

The raw data was purged anHadoop distributed file 

system (HDFS) and MapReduce (MR) were the based 

omponents used in this data analytics [7]. Appropriate 

map and reduce functions were programmed to retrieve 

information. 

 

B. MapReduce 

MapReduce is a programming model and an associated 

implementation for processing and generating large data 

sets with a parallel, distributed algorithm on a cluster. 

 

In order to appreciate what map-reduce brings to the 

table; I think it is most meaningful to contrast it to what 

I call traditional computing problems. I define 

“traditional” computing problems as those which use 

libraries like MPI, OpenMP, CUDA, or pthreads to 

produce results by utilizing multiple CPUs to perform 

some sort of numerical calculation concurrently. 

Problems that are well suited to being solved with these 

traditional methods typically share two common features: 

1. They are cpu-bound: the part of the problem that 

takes the most time is doing calculations involving 

floating point or integer arithmetic 

2. Input data is gigabyte-scale: the data that is 

necessary to describe the conditions of the 

calculation are typically less than a hundred 

gigabytes, and very often only a few hundred 

megabytes at most 

i. Traditional Parallel Applications  

 

To illustrate these differences, the following schematic 

depicts how your typical traditionally parallel 

application works.  

 

 

 
 

The input data is stored on some sort of remote storage 

device (a SAN, a file server serving files over NFS, a 

parallel Lustre or GPFS filesystem, etc; grey cylinders). 

The compute resources or elements (blue boxes) are 

abstract units that can represent MPI ranks, compute 

nodes, or threads on a shared-memory system. 

Upon launching a traditionally parallel application, 

 A master parallel worker (MPI rank, thread, etc) 

reads the input data from disk (green arrow). 

 The master worker then divides up the input data 

into chunks and sends parts to each of the other 

workers (red arrows). 

 All of the parallel workers compute their chunk of 

the input data 

 All of the parallel workers communicate their results 

with each other, then continue the next iteration of 

the calculation 
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In some cases multiple workers may use a parallel I/O 

API like MPI-IO to collectively read input data, but the 

filesystem on which the input data resides must be a 

high-performance filesystem that can sustain the 

required device-and network-read bandwidth.  

 

The fundamental limit to scalability here is step #1–the 

process of reading the input data (green arrow) is 

performed serially. Even if you can use MPI-IO to 

perform the data ingestion in parallel, the data is 

separated from the compute resources (blue squares) by 

some pipe through which data can flow at some finite 

rate. While it is possible to increase the speed of this 

connection between your data and your compute 

resources by throwing more money at it (e.g., buying 

fast SSDs, faster storage networking, and/or more 

parallel storage servers), the cost of doing this does not 

scale linearly.  

 

Data-Intensive Applications  

 

The map-reduce paradigm is a completely different way 

of solving a certain subset of parallelizable problems 

that gets around the bottleneck of ingesting input data 

from disk (that pesky green arrow). Whereas traditional 

parallelism brings the data to the compute, map-reduce 

does the opposite–it brings the compute to the data:  

 

 
Figure 1 : Map Reduce Paradigm 

  

In map-reduce, the input data is not stored on a separate, 

high-capacity storage system. Rather, the data exists in 

little pieces and is permanently stored on the compute 

elements. This allows our parallel procedure to follow 

these steps: 

1. We don’t have to move any data since it is pre-

divided and already exists on nodes capable of 

acting as computing elements 

2. All of the parallel worker functions are sent to the 

nodes where their respective pieces of the input data 

already exist and do their calculations 

3. All of the parallel workers communicate their results 

with each other, move data if necessary, then 

continue the next step of the calculation 

Thus, the only time data needs to be moved is when all 

of the parallel workers are communicating their results 

with each other in step #3. There is no more serial step 

where data is being loaded from a storage device before 

being distributed to the computing resources because the 

data already exists on the computing resources. 

C.  Hadoop - A Map-Reduce Implementation 

Now that we’ve established a description of the map-

reduce paradigm and the concept of bringing compute to 

the data, we are equipped to look at Hadoop, an actual 

implementation of map-reduce. 

 

D. The Magic of HDFS (Hadoop Distributed File 

System) 

The idea underpinning map-reduce–bringing compute to 

the data instead of the opposite–should sound like a very 

simple solution to the I/O bottleneck inherent in 

traditional parallelism. However, the devil is in the 

details, and implementing a framework where a single 

large file is transparently diced up and distributed across 

multiple physical computing elements (all while 

appearing to remain a single file to the user) is not trivial. 

Hadoop, perhaps the most widely used map-reduce 

framework, accomplishes this feat using HDFS, the 

Hadoop Distributed File System. HDFS is fundamental 

to Hadoop because it provides the data chunking and 

distribution across compute elements necessary for map-

reduce applications to be efficient. Since we’re now 

talking about an actual map-reduce implementation and 

not an abstract concept; let’s refer to the 

abstract compute elements now as compute nodes. 

HDFS exists as a filesystem into which you can copy 

files to and from in a manner not unlike any other 

filesystem. Many of the typical commands for 

manipulating files (ls, mkdir, rm, mv, cp, cat,tail, 

and chmod, to name a few) behave as you might expect 

in any other standard filesystem (e.g., Linux’s ext4). 

The magical part of HDFS is what is going on just 

underneath the surface. Although it appears to be a 

filesystem that contains files like any other, in reality 
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those files are distributed across multiple physical 

compute nodes: 

 
Figure 2 : HDFS 

 

When you copy a file into HDFS as depicted above, that 

file is transparently sliced into 64 MB “chunks” and 

replicated three times for reliability. Each of these 

chunks are distributed to various compute nodes in the 

Hadoop cluster so that a given 64 MB chunk exists on 

three independent nodes. Although physically chunked 

up and distributed in triplicate, all of your interactions 

with the file on HDFS still make it appear as the same 

single file you copied into HDFS initially. Thus, HDFS 

handles the entire burden of slicing, distributing, and 

recombining your data for you. 

E. Map-Reduce Jobs 

HDFS is an interesting technology in that it provides 

data distribution, replication, and automatic recovery in 

a user-space filesystem that is relatively easy to 

configure and, conceptually, easy to understand. 

However, its true utility comes to light when map-

reduce jobs are executed on data stored in HDFS. 

As the name implies, map-reduce jobs are principally 

comprised of two steps: the map step and the reduce step. 

The overall workflow generally looks something like 

this: 

 

Figure 3 :  Program Flow of a map-reduce Application 

The left half of the diagram depicts the HDFS magic 

described in the previous section, where the hadoop dfs -

copyFromLocal command is used to move a large data 

file into HDFS and it is automatically replicated and 

distributed across multiple physical compute nodes. 

While this step of moving data into HDFS is not strictly 

a part of a map-reduce job (i.e., your dataset may 

already have a permanent home on HDFS just like it 

would any other filesystem), a map-reduce job’s input 

data must already exist on HDFS before the job can be 

started 

 
Figure 4 : Overall design of the Hadoop Framework 

http://www.glennklockwood.com/data-intensive/hadoop/hdfs-magic.png
http://www.glennklockwood.com/data-intensive/hadoop/hdfs-magic.png
http://www.glennklockwood.com/data-intensive/hadoop/hdfs-magic.png
http://www.glennklockwood.com/data-intensive/hadoop/hdfs-magic.png
http://www.glennklockwood.com/data-intensive/hadoop/hdfs-magic.png
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Figure 4 shows the overall structure of a Hadoop 

framework based on a wireless sensor network. In this 

figure, each sensor network group (sensor network 1, 

sensor network 2, and sensor network 3) has different 

sensors and purposes as well as generating a variety of 

sensing data. For example, sensor network 1 collects 

sensing data regarding environmental information 

(humidity, temperature, carbon dioxide, carbon 

monoxide, ozone, etc.). Sensor network 2 collects 

sensing data regarding historical information (water 

level, rainfall, etc.). Sensor network 3 collects sensing 

data regarding video information (proximity distance, 

image, vision, etc.). The collected sensing data will be 

very large in size; hence, it is called Big Data. These 

data are first stored in the local file system of the 

namenode. Stored data are again stored in the distributed 

file systems based on the Hadoop framework through 

MapReduce. The Hadoop framework is comprised of 

namenodes and datanodes. Each node has either a server 

agent or a client agent in order to monitor the Hadoop 

framework during MapReduce.  

 

III. CONCLUSION & PROPOSED WORK 

 
Scientific community has collected large amounts of raw 

data from experiments and simulation. This proliferation 

of data everyday poses a significant challenge towards 

its accumulation. Different data analytics methods of 

data analytics can be performed on wireless sensors 

datasets. In spite of all the involved complexities, the 

main goal of this study is to demonstrate the benefits of 

big data analytics. 

 

The research targets are center around: 

 

 Simplification of data formats for storage of data 

coming from heterogeneous sensors in real time 

mode. 

 Real time information retrival and processing of 

filter and cluster data relevant to objective to open 

up new possibilities. 

 Statistical analysis of modeling data to extract 

hidden patterns associations / relationships between 

selected parameters. 

 Demostrate the benefits of heterogeneous data 

analysis. 

 Enable user’s capability to pre-process the data 

during the query as per their requirements. 

 Monitor the performance of the sensor’s activity to 

achieve the trustable and reliable data. 

 Design Framework for heterogeneous big data 

analytics 
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